SKAP Implementation Guide

Complete technical implementation guide for building SKAP-based agent specialization systems in Python and TypeScript

Python & TypeScript
Production Ready
MiniWoB++ Validated
Technical Prerequisites
Required dependencies and setup before implementing SKAP

Python Requirements

Python 3.8+
Selenium WebDriver 4.0+
OpenAI API / Anthropic API
Chrome/Firefox WebDriver
BeautifulSoup4, Pandas, NumPy

TypeScript Requirements

Node.js 18+
Playwright or Puppeteer
OpenAI SDK / Anthropic SDK
TypeScript 5.0+
Cheerio, Zod for validation
SKAP Three-Phase Architecture
Understanding the core phases of SKAP implementation

Phase 1: LEARN

Autonomous exploration of target environments to gather domain-specific knowledge and interaction patterns.

Phase 2: TRANSLATE

Convert exploration data into structured skills and domain expertise using LLM-powered analysis.

Phase 3: EXECUTE

Use specialized adapters to guide task execution with improved accuracy and efficiency.

Implementation Examples
Complete code examples for Python and TypeScript
1. Environment Setup
Install dependencies and configure WebDriver

Install Dependencies

pip install selenium openai anthropic beautifulsoup4 pandas numpy playwright
playwright install chromium

Basic Configuration

import os
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from openai import OpenAI
import json
import time
from typing import List, Dict, Any, Optional

class SKAPConfig:
    def __init__(self):
        self.openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.chrome_options = Options()
        self.chrome_options.add_argument("--headless")
        self.chrome_options.add_argument("--no-sandbox")
        self.chrome_options.add_argument("--disable-dev-shm-usage")
        
    def create_driver(self):
        return webdriver.Chrome(options=self.chrome_options)
2. Phase 1: LEARN - Autonomous Exploration
Implement systematic environment exploration

SKAP Learner Implementation

from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from bs4 import BeautifulSoup
import random

class SKAPLearner:
    def __init__(self, config: SKAPConfig):
        self.config = config
        self.driver = config.create_driver()
        self.observations = []
        
    def explore_environment(self, target_url: str, max_interactions: int = 50):
        """Autonomous exploration of target environment"""
        self.driver.get(target_url)
        time.sleep(2)
        
        # Initial page analysis
        dom_structure = self.analyze_dom_structure()
        ui_elements = self.catalog_interactive_elements()
        
        # Systematic interaction
        for interaction in range(max_interactions):
            try:
                # Select unexplored element
                target_element = self.select_exploration_target(ui_elements)
                if not target_element:
                    break
                    
                # Perform interaction
                action_result = self.interact_with_element(target_element)
                
                # Record observation
                observation = {
                    'action': action_result['action'],
                    'element': target_element,
                    'context': self.extract_context(),
                    'outcome': action_result['outcome'],
                    'timestamp': time.time(),
                    'page_url': self.driver.current_url
                }
                self.observations.append(observation)
                
                # Wait for page changes
                time.sleep(1)
                
            except Exception as e:
                print("Exploration error:", e)
                continue
                
        return self.observations
3. Phase 2: TRANSLATE - Skill Extraction
Convert exploration data into structured skills

SKAP Translator Implementation

import json
from collections import defaultdict, Counter
from datetime import datetime

class SKAPTranslator:
    def __init__(self, config: SKAPConfig):
        self.config = config
        
    def extract_skills(self, observations: List[Dict]) -> Dict:
        """Extract structured skills from exploration observations"""
        # Analyze interaction patterns
        patterns = self.analyze_interaction_patterns(observations)
        
        # Identify successful workflows
        workflows = self.extract_successful_workflows(observations)
        
        # Define domain expertise
        expertise = self.define_domain_expertise(observations)
        
        # Generate adapter
        return self.generate_skap_adapter(patterns, workflows, expertise)
4. Phase 3: EXECUTE - Specialized Performance
Use SKAP adapters for guided task execution

SKAP Executor Implementation

class SKAPExecutor:
    def __init__(self, adapter_path: str, config: SKAPConfig):
        self.config = config
        self.driver = config.create_driver()
        self.adapter = self.load_skap_adapter(adapter_path)
        self.skills = self.initialize_skills()
        
    def execute_task(self, task_description: str, context: Dict = None) -> Dict:
        """Execute task using SKAP adapter guidance"""
        try:
            # Apply role-specific context
            self.set_execution_context()
            
            # Generate execution plan using LLM with adapter context
            execution_plan = self.plan_with_expertise(task_description, context)
            
            # Execute with skill-guided actions
            result = self.execute_with_skills(execution_plan)
            
            # Validate using domain knowledge
            validation = self.validate_with_domain_knowledge(result)
            
            return {
                'success': True,
                'result': result,
                'validation': validation,
                'execution_time': time.time()
            }
            
        except Exception as e:
            return {
                'success': False,
                'error': str(e),
                'execution_time': time.time()
            }
5. MiniWoB++ Evaluation Setup
Set up benchmarking environment for validation

MiniWoB++ Integration

# Install MiniWoB++
pip install miniwob-plusplus

import gym
import miniwob
from miniwob.action import ActionTypes
import numpy as np

class MiniWoBSKAPEvaluator:
    def __init__(self, skap_executor: SKAPExecutor):
        self.skap_executor = skap_executor
        self.env = None
        
    def evaluate_skap_performance(self, task_name: str, num_episodes: int = 100):
        """Evaluate SKAP performance on MiniWoB++ task"""
        env = self.setup_environment(task_name)
        
        results = {
            'task': task_name,
            'episodes': num_episodes,
            'successes': 0,
            'total_reward': 0.0,
            'episode_results': []
        }
Production Deployment Considerations
Key factors for deploying SKAP systems in production

Performance Optimization

  • Implement adapter caching and reuse
  • Use headless browsers for better performance
  • Optimize LLM API calls with batching
  • Implement connection pooling for browsers

Monitoring & Reliability

  • Set up comprehensive error tracking
  • Monitor success rates and performance metrics
  • Implement graceful degradation strategies
  • Use circuit breakers for external dependencies