SKAP Implementation Guide
Complete technical implementation guide for building SKAP-based agent specialization systems in Python and TypeScript
Python & TypeScript
Production Ready
MiniWoB++ Validated
Technical Prerequisites
Required dependencies and setup before implementing SKAP
Python Requirements
Python 3.8+
Selenium WebDriver 4.0+
OpenAI API / Anthropic API
Chrome/Firefox WebDriver
BeautifulSoup4, Pandas, NumPy
TypeScript Requirements
Node.js 18+
Playwright or Puppeteer
OpenAI SDK / Anthropic SDK
TypeScript 5.0+
Cheerio, Zod for validation
SKAP Three-Phase Architecture
Understanding the core phases of SKAP implementation
Phase 1: LEARN
Autonomous exploration of target environments to gather domain-specific knowledge and interaction patterns.
Phase 2: TRANSLATE
Convert exploration data into structured skills and domain expertise using LLM-powered analysis.
Phase 3: EXECUTE
Use specialized adapters to guide task execution with improved accuracy and efficiency.
Implementation Examples
Complete code examples for Python and TypeScript
1. Environment Setup
Install dependencies and configure WebDriver
Install Dependencies
pip install selenium openai anthropic beautifulsoup4 pandas numpy playwright
playwright install chromiumBasic Configuration
import os
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from openai import OpenAI
import json
import time
from typing import List, Dict, Any, Optional
class SKAPConfig:
    def __init__(self):
        self.openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.chrome_options = Options()
        self.chrome_options.add_argument("--headless")
        self.chrome_options.add_argument("--no-sandbox")
        self.chrome_options.add_argument("--disable-dev-shm-usage")
        
    def create_driver(self):
        return webdriver.Chrome(options=self.chrome_options)2. Phase 1: LEARN - Autonomous Exploration
Implement systematic environment exploration
SKAP Learner Implementation
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from bs4 import BeautifulSoup
import random
class SKAPLearner:
    def __init__(self, config: SKAPConfig):
        self.config = config
        self.driver = config.create_driver()
        self.observations = []
        
    def explore_environment(self, target_url: str, max_interactions: int = 50):
        """Autonomous exploration of target environment"""
        self.driver.get(target_url)
        time.sleep(2)
        
        # Initial page analysis
        dom_structure = self.analyze_dom_structure()
        ui_elements = self.catalog_interactive_elements()
        
        # Systematic interaction
        for interaction in range(max_interactions):
            try:
                # Select unexplored element
                target_element = self.select_exploration_target(ui_elements)
                if not target_element:
                    break
                    
                # Perform interaction
                action_result = self.interact_with_element(target_element)
                
                # Record observation
                observation = {
                    'action': action_result['action'],
                    'element': target_element,
                    'context': self.extract_context(),
                    'outcome': action_result['outcome'],
                    'timestamp': time.time(),
                    'page_url': self.driver.current_url
                }
                self.observations.append(observation)
                
                # Wait for page changes
                time.sleep(1)
                
            except Exception as e:
                print("Exploration error:", e)
                continue
                
        return self.observations3. Phase 2: TRANSLATE - Skill Extraction
Convert exploration data into structured skills
SKAP Translator Implementation
import json
from collections import defaultdict, Counter
from datetime import datetime
class SKAPTranslator:
    def __init__(self, config: SKAPConfig):
        self.config = config
        
    def extract_skills(self, observations: List[Dict]) -> Dict:
        """Extract structured skills from exploration observations"""
        # Analyze interaction patterns
        patterns = self.analyze_interaction_patterns(observations)
        
        # Identify successful workflows
        workflows = self.extract_successful_workflows(observations)
        
        # Define domain expertise
        expertise = self.define_domain_expertise(observations)
        
        # Generate adapter
        return self.generate_skap_adapter(patterns, workflows, expertise)4. Phase 3: EXECUTE - Specialized Performance
Use SKAP adapters for guided task execution
SKAP Executor Implementation
class SKAPExecutor:
    def __init__(self, adapter_path: str, config: SKAPConfig):
        self.config = config
        self.driver = config.create_driver()
        self.adapter = self.load_skap_adapter(adapter_path)
        self.skills = self.initialize_skills()
        
    def execute_task(self, task_description: str, context: Dict = None) -> Dict:
        """Execute task using SKAP adapter guidance"""
        try:
            # Apply role-specific context
            self.set_execution_context()
            
            # Generate execution plan using LLM with adapter context
            execution_plan = self.plan_with_expertise(task_description, context)
            
            # Execute with skill-guided actions
            result = self.execute_with_skills(execution_plan)
            
            # Validate using domain knowledge
            validation = self.validate_with_domain_knowledge(result)
            
            return {
                'success': True,
                'result': result,
                'validation': validation,
                'execution_time': time.time()
            }
            
        except Exception as e:
            return {
                'success': False,
                'error': str(e),
                'execution_time': time.time()
            }5. MiniWoB++ Evaluation Setup
Set up benchmarking environment for validation
MiniWoB++ Integration
# Install MiniWoB++
pip install miniwob-plusplus
import gym
import miniwob
from miniwob.action import ActionTypes
import numpy as np
class MiniWoBSKAPEvaluator:
    def __init__(self, skap_executor: SKAPExecutor):
        self.skap_executor = skap_executor
        self.env = None
        
    def evaluate_skap_performance(self, task_name: str, num_episodes: int = 100):
        """Evaluate SKAP performance on MiniWoB++ task"""
        env = self.setup_environment(task_name)
        
        results = {
            'task': task_name,
            'episodes': num_episodes,
            'successes': 0,
            'total_reward': 0.0,
            'episode_results': []
        }Production Deployment Considerations
Key factors for deploying SKAP systems in production
Performance Optimization
- Implement adapter caching and reuse
 - Use headless browsers for better performance
 - Optimize LLM API calls with batching
 - Implement connection pooling for browsers
 
Monitoring & Reliability
- Set up comprehensive error tracking
 - Monitor success rates and performance metrics
 - Implement graceful degradation strategies
 - Use circuit breakers for external dependencies