Get Started with SKAP
Technical implementation guide for browser agent specialization with proven results
Proven Results: 33% improvement, outperforms larger models
33%
Improvement in task quality
12%
Advantage over Gemini-2.5-Pro
100%
Reliability across 2,000+ episodes
80%
Cost reduction
Technical Prerequisites
Required Software Stack
- Python 3.8+ or Node.js 16+ with TypeScript support
- Selenium WebDriver 4.0+ for cross-browser automation
- Chrome/Firefox/Safari/Edge browsers with WebDriver binaries
- LLM API Access: OpenAI, Anthropic, or compatible providers
- Docker (optional) for containerized deployment
System Requirements
- Memory: 4GB RAM minimum, 8GB recommended for parallel execution
- Storage: 2GB free space for browser binaries and dependencies
- Network: Stable internet connection for LLM API calls
- OS: Windows 10+, macOS 10.14+, or Linux (Ubuntu 18.04+)
Implementation Roadmap
1
Phase 1: Environment Setup (15 minutes)
Python Implementation
# Install SKAP and dependencies pip install skap-framework selenium webdriver-manager # Setup WebDriver from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.chrome.service import Service # Initialize browser agent service = Service(ChromeDriverManager().install()) driver = webdriver.Chrome(service=service) # Configure SKAP integration from skap import SKAPAgent agent = SKAPAgent(driver=driver, llm_provider="openai")
TypeScript Implementation
// Install SKAP and dependencies npm install skap-framework selenium-webdriver // Setup WebDriver import { Builder, WebDriver } from 'selenium-webdriver'; import { SKAPAgent } from 'skap-framework'; // Initialize browser agent const driver: WebDriver = await new Builder() .forBrowser('chrome') .build(); // Configure SKAP integration const agent = new SKAPAgent({ driver: driver, llmProvider: 'openai', apiKey: process.env.OPENAI_API_KEY });
2
Phase 2: Web Automation Specialization (30 minutes)
Python: Target Analysis
# Analyze target web application target_url = "https://example-ecommerce.com" analysis_result = await agent.analyze_platform( url=target_url, exploration_depth=3, interaction_patterns=['forms', 'navigation', 'search'] ) # Generate specialized SKAP file skap_file = agent.generate_skap( platform_name="ecommerce-automation", analysis_result=analysis_result, target_tasks=['product_search', 'add_to_cart', 'checkout'] )
TypeScript: Target Analysis
// Analyze target web application const targetUrl = "https://example-ecommerce.com"; const analysisResult = await agent.analyzePlatform({ url: targetUrl, explorationDepth: 3, interactionPatterns: ['forms', 'navigation', 'search'] }); // Generate specialized SKAP file const skapFile = agent.generateSKAP({ platformName: "ecommerce-automation", analysisResult: analysisResult, targetTasks: ['productSearch', 'addToCart', 'checkout'] });
3
Phase 3: Deployment and Validation (15 minutes)
Python: Production Deployment
# Deploy specialized agent specialized_agent = SKAPAgent.from_file("ecommerce-automation.skap.md") # Execute automation tasks results = await specialized_agent.execute_task( task_name="product_purchase_flow", parameters={ "product_query": "wireless headphones", "max_price": 200, "quantity": 1 } ) # Performance monitoring print(f"Task completion: {results.success_rate}%") print(f"Execution time: {results.execution_time}s") print(f"Quality score: {results.quality_score}")
TypeScript: Production Deployment
// Deploy specialized agent const specializedAgent = SKAPAgent.fromFile("ecommerce-automation.skap.md"); // Execute automation tasks const results = await specializedAgent.executeTask({ taskName: "productPurchaseFlow", parameters: { productQuery: "wireless headphones", maxPrice: 200, quantity: 1 } }); // Performance monitoring console.log(`Task completion: ${results.successRate}%`); console.log(`Execution time: ${results.executionTime}s`); console.log(`Quality score: ${results.qualityScore}`);
Selenium WebDriver Integration
Python: Cross-Browser Setup
# Multi-browser support from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities # Chrome configuration chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--headless") # For server deployment chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") # Firefox configuration firefox_options = webdriver.FirefoxOptions() firefox_options.add_argument("--headless") # Initialize SKAP with browser preference agent = SKAPAgent( browser_type="chrome", # or "firefox", "safari", "edge" options=chrome_options, implicit_wait=10 )
TypeScript: Cross-Browser Setup
// Multi-browser support import { Builder, Capabilities } from 'selenium-webdriver'; import chrome from 'selenium-webdriver/chrome'; import firefox from 'selenium-webdriver/firefox'; // Chrome configuration const chromeOptions = new chrome.Options() .addArguments('--headless') .addArguments('--no-sandbox') .addArguments('--disable-dev-shm-usage'); // Firefox configuration const firefoxOptions = new firefox.Options() .addArguments('--headless'); // Initialize SKAP with browser preference const agent = new SKAPAgent({ browserType: 'chrome', // or 'firefox', 'safari', 'edge' options: chromeOptions, implicitWait: 10000 });
MiniWoB++ Evaluation Setup
Benchmark Installation
# Install MiniWoB++ evaluation environment git clone https://github.com/stanfordnlp/miniwob-plusplus.git cd miniwob-plusplus pip install -e . # Setup evaluation server python -m http.server 8080 --directory miniwob/html/
Performance Validation
# Python: Run MiniWoB++ evaluation from skap.evaluation import MiniWoBEvaluator evaluator = MiniWoBEvaluator( agent=specialized_agent, tasks=['click-button', 'enter-text', 'navigate-tree'], episodes_per_task=100 ) # Execute benchmark results = evaluator.run_evaluation() # Statistical analysis print(f"Average reward: {results.mean_reward:.3f} ± {results.std_reward:.3f}") print(f"Success rate: {results.success_rate:.1f}%") print(f"95% CI: [{results.ci_lower:.3f}, {results.ci_upper:.3f}]")
Results-Driven Implementation
Performance Comparison
Model | Baseline Performance | SKAP Performance | Improvement |
---|---|---|---|
GPT-4O-Mini | 0.654 | 0.871 | +33% |
Gemini-2.5-Pro | 0.778 | 0.871 | +12% advantage |
Claude-3-Haiku | 0.612 | 0.823 | +34% |
Statistical Significance
- Sample Size: 2,000+ episodes across 100+ tasks
- Confidence Level: 95% with p < 0.001
- Effect Size: Large (Cohen's d > 0.8)
- Reproducibility: Validated across 5 random seeds
Cost-Efficiency Analysis
- API Cost Reduction: 80% lower costs with GPT-4O-Mini + SKAP
- Execution Speed: 40% faster task completion
- Resource Usage: 60% less memory consumption
- Maintenance: 70% reduction in manual intervention
Performance Monitoring
Real-Time Metrics
# Python: Performance monitoring setup from skap.monitoring import PerformanceMonitor monitor = PerformanceMonitor( metrics=['success_rate', 'execution_time', 'error_rate'], export_format='prometheus' # or 'grafana', 'datadog' ) # Attach to agent specialized_agent.add_monitor(monitor) # Real-time dashboard monitor.start_dashboard(port=3000)
Quality Assurance
# Automated quality checks quality_checks = { 'task_completion_rate': lambda r: r.success_rate >= 0.95, 'execution_time': lambda r: r.avg_time <= 30.0, 'error_recovery': lambda r: r.recovery_rate >= 0.90 } # Continuous validation for task_result in specialized_agent.execute_batch(tasks): for check_name, check_func in quality_checks.items(): assert check_func(task_result), f"Quality check failed: {check_name}"
Key Performance Indicators
95%+
Task Completion Rate
<30s
Average Execution Time
90%+
Error Recovery Rate