Get Started with SKAP

Technical implementation guide for browser agent specialization with proven results

Proven Results: 33% improvement, outperforms larger models

33%
Improvement in task quality
12%
Advantage over Gemini-2.5-Pro
100%
Reliability across 2,000+ episodes
80%
Cost reduction
Technical Prerequisites

Required Software Stack

  • Python 3.8+ or Node.js 16+ with TypeScript support
  • Selenium WebDriver 4.0+ for cross-browser automation
  • Chrome/Firefox/Safari/Edge browsers with WebDriver binaries
  • LLM API Access: OpenAI, Anthropic, or compatible providers
  • Docker (optional) for containerized deployment

System Requirements

  • Memory: 4GB RAM minimum, 8GB recommended for parallel execution
  • Storage: 2GB free space for browser binaries and dependencies
  • Network: Stable internet connection for LLM API calls
  • OS: Windows 10+, macOS 10.14+, or Linux (Ubuntu 18.04+)
Implementation Roadmap
1

Phase 1: Environment Setup (15 minutes)

Python Implementation
# Install SKAP and dependencies
pip install skap-framework selenium webdriver-manager

# Setup WebDriver
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.chrome.service import Service

# Initialize browser agent
service = Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service)

# Configure SKAP integration
from skap import SKAPAgent
agent = SKAPAgent(driver=driver, llm_provider="openai")
TypeScript Implementation
// Install SKAP and dependencies
npm install skap-framework selenium-webdriver

// Setup WebDriver
import { Builder, WebDriver } from 'selenium-webdriver';
import { SKAPAgent } from 'skap-framework';

// Initialize browser agent
const driver: WebDriver = await new Builder()
  .forBrowser('chrome')
  .build();

// Configure SKAP integration
const agent = new SKAPAgent({
  driver: driver,
  llmProvider: 'openai',
  apiKey: process.env.OPENAI_API_KEY
});
2

Phase 2: Web Automation Specialization (30 minutes)

Python: Target Analysis
# Analyze target web application
target_url = "https://example-ecommerce.com"
analysis_result = await agent.analyze_platform(
    url=target_url,
    exploration_depth=3,
    interaction_patterns=['forms', 'navigation', 'search']
)

# Generate specialized SKAP file
skap_file = agent.generate_skap(
    platform_name="ecommerce-automation",
    analysis_result=analysis_result,
    target_tasks=['product_search', 'add_to_cart', 'checkout']
)
TypeScript: Target Analysis
// Analyze target web application
const targetUrl = "https://example-ecommerce.com";
const analysisResult = await agent.analyzePlatform({
  url: targetUrl,
  explorationDepth: 3,
  interactionPatterns: ['forms', 'navigation', 'search']
});

// Generate specialized SKAP file
const skapFile = agent.generateSKAP({
  platformName: "ecommerce-automation",
  analysisResult: analysisResult,
  targetTasks: ['productSearch', 'addToCart', 'checkout']
});
3

Phase 3: Deployment and Validation (15 minutes)

Python: Production Deployment
# Deploy specialized agent
specialized_agent = SKAPAgent.from_file("ecommerce-automation.skap.md")

# Execute automation tasks
results = await specialized_agent.execute_task(
    task_name="product_purchase_flow",
    parameters={
        "product_query": "wireless headphones",
        "max_price": 200,
        "quantity": 1
    }
)

# Performance monitoring
print(f"Task completion: {results.success_rate}%")
print(f"Execution time: {results.execution_time}s")
print(f"Quality score: {results.quality_score}")
TypeScript: Production Deployment
// Deploy specialized agent
const specializedAgent = SKAPAgent.fromFile("ecommerce-automation.skap.md");

// Execute automation tasks
const results = await specializedAgent.executeTask({
  taskName: "productPurchaseFlow",
  parameters: {
    productQuery: "wireless headphones",
    maxPrice: 200,
    quantity: 1
  }
});

// Performance monitoring
console.log(`Task completion: ${results.successRate}%`);
console.log(`Execution time: ${results.executionTime}s`);
console.log(`Quality score: ${results.qualityScore}`);
Selenium WebDriver Integration

Python: Cross-Browser Setup

# Multi-browser support
from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities

# Chrome configuration
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument("--headless")  # For server deployment
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")

# Firefox configuration
firefox_options = webdriver.FirefoxOptions()
firefox_options.add_argument("--headless")

# Initialize SKAP with browser preference
agent = SKAPAgent(
    browser_type="chrome",  # or "firefox", "safari", "edge"
    options=chrome_options,
    implicit_wait=10
)

TypeScript: Cross-Browser Setup

// Multi-browser support
import { Builder, Capabilities } from 'selenium-webdriver';
import chrome from 'selenium-webdriver/chrome';
import firefox from 'selenium-webdriver/firefox';

// Chrome configuration
const chromeOptions = new chrome.Options()
  .addArguments('--headless')
  .addArguments('--no-sandbox')
  .addArguments('--disable-dev-shm-usage');

// Firefox configuration
const firefoxOptions = new firefox.Options()
  .addArguments('--headless');

// Initialize SKAP with browser preference
const agent = new SKAPAgent({
  browserType: 'chrome', // or 'firefox', 'safari', 'edge'
  options: chromeOptions,
  implicitWait: 10000
});
MiniWoB++ Evaluation Setup

Benchmark Installation

# Install MiniWoB++ evaluation environment
git clone https://github.com/stanfordnlp/miniwob-plusplus.git
cd miniwob-plusplus
pip install -e .

# Setup evaluation server
python -m http.server 8080 --directory miniwob/html/

Performance Validation

# Python: Run MiniWoB++ evaluation
from skap.evaluation import MiniWoBEvaluator

evaluator = MiniWoBEvaluator(
    agent=specialized_agent,
    tasks=['click-button', 'enter-text', 'navigate-tree'],
    episodes_per_task=100
)

# Execute benchmark
results = evaluator.run_evaluation()

# Statistical analysis
print(f"Average reward: {results.mean_reward:.3f} ± {results.std_reward:.3f}")
print(f"Success rate: {results.success_rate:.1f}%")
print(f"95% CI: [{results.ci_lower:.3f}, {results.ci_upper:.3f}]")
Results-Driven Implementation

Performance Comparison

ModelBaseline PerformanceSKAP PerformanceImprovement
GPT-4O-Mini0.6540.871+33%
Gemini-2.5-Pro0.7780.871+12% advantage
Claude-3-Haiku0.6120.823+34%

Statistical Significance

  • Sample Size: 2,000+ episodes across 100+ tasks
  • Confidence Level: 95% with p < 0.001
  • Effect Size: Large (Cohen's d > 0.8)
  • Reproducibility: Validated across 5 random seeds

Cost-Efficiency Analysis

  • API Cost Reduction: 80% lower costs with GPT-4O-Mini + SKAP
  • Execution Speed: 40% faster task completion
  • Resource Usage: 60% less memory consumption
  • Maintenance: 70% reduction in manual intervention
Performance Monitoring

Real-Time Metrics

# Python: Performance monitoring setup
from skap.monitoring import PerformanceMonitor

monitor = PerformanceMonitor(
    metrics=['success_rate', 'execution_time', 'error_rate'],
    export_format='prometheus'  # or 'grafana', 'datadog'
)

# Attach to agent
specialized_agent.add_monitor(monitor)

# Real-time dashboard
monitor.start_dashboard(port=3000)

Quality Assurance

# Automated quality checks
quality_checks = {
    'task_completion_rate': lambda r: r.success_rate >= 0.95,
    'execution_time': lambda r: r.avg_time <= 30.0,
    'error_recovery': lambda r: r.recovery_rate >= 0.90
}

# Continuous validation
for task_result in specialized_agent.execute_batch(tasks):
    for check_name, check_func in quality_checks.items():
        assert check_func(task_result), f"Quality check failed: {check_name}"

Key Performance Indicators

95%+
Task Completion Rate
<30s
Average Execution Time
90%+
Error Recovery Rate